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The study of circulatory flow induced in a rectangular cavity by the uniform translation 
of one of its boundaries requires accurate modeling of two-dimensional viscous flows (see, 
e.g., [1-4]). The main problem is that at large Reynolds numbers (here Reynolds number Re = 
U*H*/~*, where U is the velocity of the moving boundary, H is the length of the moving bound- 
ary, and ~ is the coefficient of kinematic viscosity; the asterisk indicates dimensional 
quantities), starting from Re of the order of l0 s , the Navier--Stokes equations governing such 
flows contain diffusion term with a small coefficient. The application of finite difference 
methods to solve the Navier-Stokes equations introduces an artificial viscosity in the solu- 
tion procedure due to errors of approximation which for certain schemes could exceed the real 
viscosity at relatively low Reynolds numbers (Re ~ 500), and these errors distort the solution 
to the problem. As established in [2], the first-order upwind schemes result in fluid flow 
with a certain effective Reynolds number which is appreciably no less than the true value, and 
this leads to a reduction in circulation with increase in Reynolds number [2]. The use of 
coarse grids, especially with uniformly distributed nodes in the computational region [5], 
leads to insufficient accuracy, and in a number of cases even erroneous results. Hence, there 
has been a tendency in recent times [4] to use schemes with higher-order approximations in 
combination with nonuniform grids whose nodes are clustered in regions of large gradients of 
critical flow parameters. 

Plane rectangular cavities with different aspect ratios A (ratio of depth L* to width H*) 
are considered in the present paper. The unsteady Navier--Stokes equations are written in 
terms of vorticity and the stream function approach. A coordinate transformation is used to 
cluster grid lines near the wall region where the viscous parameters vary rapidly. The phys- 
ical coordinates (x, y) are related to the transformed coordinates (~,n) by the following 
transformation: 

z = D {$ - -  b / (2a)  sin (2a~)}, 0 ~-~ ~ -<  0.5, 

z = 0 {$ + b/(2~) sin I2~(~ - -  0.5)1},  0.5 4 ~ ~ I.  

Here, for z ~ x and ~ ~ 6, we have D = i, and for z ~ y, and ~ ~ n, we have D = A. All phys- 
ical variables and length scales in the problem are nondimensionalized with respect to the 
characteristic quantities U* and H*. 

The no-slip condition and the condition that the stream function is zero at solid bound- 
aries are used as boundary conditions. The steady-state solution to the problem is obtained 
by solving the problem intime, the solution being started with the fluid in the cavity at 
rest. 

The numerical solution of the vorticity transport equation is carried out through a 
step-by-step integration in time, using an explicit, second-order Adams--Bashforth triple deck 
scheme. The convective terms in this equation are represented by Arakawa schemes [6] of sec- 
ond and fourth orders, and the remaining spatial derivatives in the system of equations are 
approximated by central differences. The Gauss--Seidel iterative scheme with superior relaxa- 
tion procedures is used for solving the equation that couples vorticity and stream function 
at each time step. Boundary conditions for vorticity are determined by second-order Woods' 
[2] scheme. The step size in time is established by numerical experiment. 

It is worth mentioning that the approach used above has certain positive features as 
applied to typical flow characteristics. For a square cavity, it is well known [2] that with 
increasing Reynolds number the effect of viscosity on the flow is localized to the neighbor- 
hood of the cavity walls, whereas an inviscid core is formed in the central region. The use 
of finite-difference grids with small spatial interval near the walls makes it possible to 
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accurately compute the viscous flow properties, and the application of the Arakawa scheme, 
which has the property of conserving mean values of the vorticity, the square of circulation, 
and the kinetic energy [6], conveys the structure of ideal flow without distortion (kinetic 
energy and the square of circulation are transported in the two-dimensional region from one 
grid point to the other without any artificial change). 

Numerical computations of the viscous flows have been carried out for the square cavity 
for the range of Reynolds numbers from i00 to 2500, and also when Re = i000 for square cavities 
with aspect ratios varying from 0.5 to 2.0. StatiOnary solutions obtained during the evolu- 
tion of the flow with time have been analyzed. The number of time steps to reach the steady- 
state appears to be dependent on the dimensions of the region, Reynolds number, and the number 
of grid points, and this varies approximately from i000 to 2500. 

Streamlines in the square cavity are shown in Fig. la-c for Re = 400, I000, and 2500, 
respectively (streamlines correspond to constant values of the stream function: curve i) 

=--0.i0; 2) ~ =--0.06; 3) ~=--0.01; 4) ~ = 0; 5) ~ = 0.0001; 6) ~ = 0.001). The flow 
structure for both medium and high Reynolds numbers is characterized by the presence of a 
developed central vortex and a pair of secondary corner vortices of lower strength. It is 
worth emphasizing that an increase in Reynolds number is accompanied by an increase in the 
strength of the secondary vortices at the lower corners of the cavity, and not a decrease as 
mentioned in [2]. The central vortex in the cavity grows but does not tend to occupy the 
entire cavity in the limiting case of the flow as Re + = (as assumed in [i]). It is possible 
to observe the tendency of the size of the corner vortices to stabilize at Reynolds numbers 
greater than i000. An interesting feature of the flow structure is the onset and growth of 
the secondary vortex in the neighborhood of the moving boundary, starting from Re = 1500. 
This last result agrees well with the data on the flow structure given in [3, 4] for Reynolds 
numbers 2000 and 4000. 

Figure 2 shows the disaribution of skin friction on the walls of the square cavity for 
Re = 400; i000; 2500 (curves 1-3, respectively). With increase in Reynolds number, an increase 
in the absolute value of skin friction is observed on all surfaces of the cavity, and the max- 
imum friction at the bottom of the cavity increases almost proportional to the variation in 
Reynolds number. We observe the existence of appreciable friction in the zone of action of 
the secondary corner vortex near the downstream wall, and also a change in the sign of fric- 
tion at the upstream wall close to the moving boundary. 

Figure 3a shows profiles of the longitudinal velocity component in the central vertical 
plane of the square cavity for Re = i00, 400, i000, and 25000 (curves 1-4, respectively). 
With increase in Reynolds number there is an increase in the velocity of the circulatory flow 
from 0.2 when Re = i00 to 0.41 when Re = 2500, and the maximum velocity approaches the bottom 
of the cavity. Thus, there is an intensification of the flow in the central vortex and an 
increase in its size. The analysis of velocity profiles confirms, in principle, Batchelor's 
idea [i] on the growth of the ideal core of constant vorticity in the central zone of the 
cavity and also on the localization of viscous effects in the small neighborhood of the cavity 
walls. 

Figure 3b shows profiles of the longitudinal component of the velocity in the central 
vertical plane for Re = i000 for rectangular cavities with A = 0.5, 0.75, 1.0, and 2.0 (curves 
1-4, respectively). With increase in A from 0.5 to 0.75, the maximum value of the longitudinal 
velocity component increases and, when A is greater than 0.75, it decreases slightly. It is 
observed that for cavities with A equal to 1.0 and 2.0, the longitudinal velocity components 
in the central vortex are identical. The intensity of the flow in the secondary vortex in 
the cavity with A = 2.0 is much less than that in the primary vortex, the maximum value of 
the longitudinal velocity component not exceeding 0.06. 

The streamline pattern is shown in Fig. 4a-d for Re = i000 for rectangular cavities with 
A = 0.5, 0.75, 1.4, and 2.0 respectively (streamlines correspond to constant values of the 
stream function: curve i) ~ =--0.i0; 2) ~ =-~.06; 3) @ = 0.01; 4) ~ = 0; 5) ~ = 0.0001; 6) 

0.001; 7) ~ = 0.01; 8) ~ = 0.02). For small depths of the cavity (A = 0.5), the flow struc- 
ture is characterized by the presence of two large scale vortices: a well-developed central 
vortex occupying the larger portion of the region and a weaker vortex in the corner behind the 
upstream wall. The structure of the latter vortex is, similar to a certain extent, to the 
flow structure in the wake of a bluff body. The secondary vortexnear the rear wall is a small- 
scale vortex and it is weak and small. With an increase in the depth of the cavity from 0.5 
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to 1.0 (Fig. 4a, b and Fig. ib) there is an increase in the size and strength of the central 
vortex and also a gradual rearrangement of the structure of the corner vortices, exhibiting 
a reduction in the vortex size at the upstream wall and �9 increase at the downstream wall. 
With further increase in the cavity depth (Fig. 4c, d), the structural evolution of the cen- 
tral vortex ends, and the vortex size and strength are stabilized and no longer depend on 
the change in depth beyond A = 1.0. However, corner vortices continue to grow as before and 
then merge into one another, forming a single secondary vortex which occupies the entire 
width of the cavity and rolls to the side opposite to the direction of rotation of the cen- 
tral vortex. An increase in A is accompanied by a strengthening of the secondary vortex, 
and the flow velocity in it is increased but still remains much weaker than the central vor- 
tex. The formation of the vortices in the lower corners of the cavity and their growth with 
change in cavity depth have been observed for cavities with A = 1.4 and 2.0. The latter case 
agrees with the experimentally observed tendency in a deep cavity for the growth of a system 
of vertically located large-scale vortices whose intensity subsides as the bottom Of the 
cavity is approached. Vortices are separated from each other by a fairly wide merging zone, 
while, as indicated by analysis of the results presented in Fig. 3b and 4, it is also possible 
to identify the core of constant vorticity in the secondary vortex. 
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